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Abstract 

Quantum Search Algorithm, particularly Grover's Algorithm, has emerged as a promising 

methodology for enhancing the efficiency of search engines and solving various computational 

problems. This paper presents a comprehensive study of the design and implementation of Grover's 

Algorithm on quantum systems with 3, 4, and 5 qubits. Theoretical explanations of Grover's method 

are provided, elucidating its step-by-step approach for enhanced understanding. Through detailed 

performance analysis, including gate count, Q-sphere representation, and measurement probability, 

the study demonstrates the reliability and effectiveness of Grover's Algorithm in searching unsorted 

databases. Results indicate that with the increase of number of qubits, the required number of quantum 

gates in the circuit also grows, with 3-qubit systems utilizing 13 gates, 4-qubit systems employing 27 

gates, and 5-qubit systems utilizing 34 gates. Despite this increase, the designs exhibit minimal errors 

or noise, ensuring the accuracy of the outcomes. Visualization of quantum states using the Q-sphere 

representation offers a global perspective, aiding in the comprehension of algorithm behavior.  
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1. Introduction 

Quantum Search [1], [2] is a methodology that can be employed to enhance the efficiency of several 

traditional search engines. It conducts a comprehensive search for a viable resolution to a diverse array 

of issues. The aim is to determine, without previous knowledge about the information structure, if a 

given number p is a non-trivial factor of a big integer of size 𝑁. Finding the non-trivial factors may be 

accomplished by methodically going over the set until they are found. This problem normally requires 

around N operations; however, Grover's search strategy requires about √𝑁 operations with a 

probability larger than 1/2. 

Grover's Algorithm has the potential to be utilized for searching real databases, however, very few 

research papers have been published in this specific domain. Researchers regard Oracle as a virtual 

database for doing searches. The database's size and the quantum hardware's capabilities affect how 

long searches take on it. As such, using simulation tools to analyze the process of creating a quantum 

circuit is essential. In order to reduce the amount of quantum gates and design errors, this study uses 

IBM Quantum Lab, also known as the quantum programming studio, to properly create the quantum 

circuit for Grover's search algorithm on 3, 4, and 5-qubit systems utilizing various quantum gates. 

 We have also included a theoretical explanation of Grover's method, outlining the step-by-step 

approach to enhance understanding of the technique. The paper is organized as follows: The 

significance and useful applications of the Search Algorithm are described in Section 1. Section 2 

analyses existing approaches and their conclusions concerning Grover's search algorithm. Grover's 

algorithm's operating notion is briefly explained in Section 3. Grover's method is implemented and the 

results are shown in Section 4 for systems with 3, 4, and 5 qubits. Finally, the discussion and conclusion 

are presented in Section 5. 

 

2. Literature Survey 

The 4-qubit quantum algorithm was implemented successfully on the ibmqx5 architecture in [3], and 

the results of that implementation were widely publicized. The simulation outcomes were then 

contrasted with the performance accuracy of their execution. The complexity of circuit design requires 
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greater hardware support for their implementation performance. A classical quantum search method 

for locating the shortest route in a given graph was introduced in [4]. It is not possible to use Grover's 

method to look up an item in a real database. Potential results were obtained by using the QCAD 

simulator to demonstrate theoretical quantum error correction in [5].  

Grover's approach is applicable for searching a singular item within an unorganized database. In [6], 

an expanded version of Grover's approach was developed to facilitate the search of several objects in 

a vast and unsorted database. This approach has demonstrated consistent outcomes, similar to Grover's 

technique for searching a single item. The authors [7] successfully executed Grover's algorithm on an 

actual ibmqx4 quantum computer with 5 qubits. A Grover’s search algorithm implementation with 4-

qubit was created [8], and test results indicated that quantum computers are capable of properly solving 

only simple problems with limited input. In [9], circuit QED was utilized to create an interaction 

between two transmon qubits, with the aim of enhancing the efficiency of implementing Grover's 

search algorithm inside the nanosecond timeframe. An implementation of Grover's method was carried 

out by employing two trapped atomic ion qubits to enhance the speed of the search process. In [10] 

attempt was made to implement Grover's technique in a scalable system to enhance the likelihood of 

successfully finding the item being searched. A 3-qubit quantum circuit was designed and constructed 

[11], whereas the 2-qubit quantum algorithm was implemented [12] with a linear optical device. 

 Grover's Search Algorithm 

The Grover’s Search method, proposed by Lov Grover in 1996, [13] enables the quickest quantum 

search for an unsorted database. It realizes a temporal complexity of O(√n) and a special complexity 

of O(logN). For a list containing 107 entries, the number of iterations needed to search for a specific 

item is approximately 10000. The result will have a probability close to 1, and it will be extremely 

accurate. 

Despite providing merely a quadratic speedup, Grover's technique is significant when N is big. Table 

1 displays Grover's method, whereas Figure 1 demonstrates the circuit representation of Grover’s 

method. 

 
Figure 1: Grover’s search algorithm method 

Let's assume we have an unsorted database with N entries, which may be represented as a set X = {x0 

, x1 , . . . , xN−1 }[14]. We are also given a Boolean function f ∶ X → {0, 1}. The objective is to locate 

an element x in X for which f(x) = 1. A better way to describe unstructured search is as a database 

search problem, in which we are given a database and we need to find an item that meets specific 

requirements [15]. For example, if we are given a database with N names in it, we could have to figure 

out where your name exactly is in the database. The term "unstructured" refers to the fact that the 

database's structure is not guaranteed. We can use binary search to find an element in logarithmic time 

given a sorted database. On the contrary, we lack any previous information on the contents of the 

database. The efficiency of doing a linear number of queries to find the target element cannot be 

increased while using classical circuits. Index numbers ranging from 0 to N − 1 are allocated to the N 

items, where N is equal to 2 raised to the power of n. The problem of searching may be modeled by a 

function f that takes an integer x as input from the set of indexes 0 to N−1. 

The function f(x) is defined such that it returns a value of 1 if x is located during a search, and a value 

of 0 if x is not discovered during a search. The function f(x) may be defined as follows:  
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𝑓(𝑥) = {
0 𝑖𝑓 𝑥 ≠ 𝑢
1 𝑖𝑓 𝑥 = 𝑢

 

where the element that has to be sought is denoted by u. 

Table 1: Grover’s Algorithm 

Input:  

i) An Oracle O that transforms |𝑥〉|𝑞〉𝑂 → |𝑥〉|𝑞 ⊕ 𝑓(𝑥)〉  
where f(x) = 0 for all 0 ≤ x < N − 1 and f(x) = 1 for x = u.  

ii) State |0〉 with n + 1 qubits.  

                    Output: A matching item was located. that is, u  

                  Runtime: Has an O(1) chance of success and requires O(√N) operations.  

                  Procedure:  

                   Step 1: Set the starting state of the algorithm to |0〉 ⊗n.  

                   Step 2: On the first n qubits, apply the Hadamard transform; on the last qubit, apply the 

                                           Hadamard and X gate as follows:  

                          1 √N ∑ |x〉[ |0〉−|1〉 √2 ] N−1 x=0  

                     Step 3: The next step is to execute Grover's Operation for R ≤ ⌈ π 4 √ 2N M ⌉   
repetitions.  

                  Step3.1: Use Oracle O to apply the following such that |x〉 O → (−1) f(x) |x〉  
                  Step 3.2: Take the state that was acquired in Step 3.1 and apply the Hadamard  

                                          transform H ⊗n to it.   

                  Step 3.3: Apply the conditional phase shift operation using the equation |x〉 phase →  

                                 (−1) δx0|x〉, to all states except the |0〉 state, which receives a phase shift of −1.  

                  Step 3.4: Use the H ⊗n Hadamard transform. Grover's operation will ultimately yield                          

                                the following state:  

 [(2|ѱ〉⟨ѱ| − I)O] R 1 √N ∑ |x〉[ |0〉−|1〉 √2 ] N−1 x=0 ≈ u [ |0〉−|1〉 √2 ] 

                  Step 4: Assess the initial n qubits in step four. The matching item u will be the outcome.  

Grover's method is explained in a step-by-step manner as follows: The state |0〉 ⊗n is where the 

algorithm starts. To obtain an equal superposition state, apply the Pauli X transform and Hadamard 

transform (HX) on the final qubit after performing the Hadamard transform H ⊗n on the first n qubits. 

This process may be expressed as follows [16]:  

H ⨂n |0〉 ⨂n = |ѱ〉 = 1 √N ∑ |x〉 N−1 x=0 (2) HX|1〉 = [ |0〉−|1〉 √2 ] 

The expression |ѱ〉 = 1/√N ∑ |i〉 represents the superposition of all base states, where i ranges from 1 

to N. Run the Grover's operator now. There are four separate stages in the Grover iteration quantum 

circuit. There are four steps involved in this process: the Oracle function, Hadamard transform, 

conditional phase shift operation on all computational basis states (except |0>, which is phase-shifted 

by -1), and Hadamard transform. The following operation is performed by the oracle, a unitary operator 

represented by the letter O: 

|x〉|q〉 O → |x〉|q ⨁ f(x)〉 

All items from 0 to N-1 have their indexes stored in the input register |x〉. The symbol ⨁ indicates the 

addition modulo 2. In case f(x) = 1, the oracle qubit |q〉 flips, and in all other cases it stays unchanged. 

The oracle qubit |q〉 might be referred to as a "ancilla" or "ancillary qubit", which serves the purpose 

of incorporating additional qubits into the algorithm. If the value of x cannot be located, the application 

of the oracle to the state will not result in any alteration to the state. However, in the event that x is 

discovered, the final state is changed to a new state. Grover's approach makes extremely simple use of 

an oracle. The output that is produced when the oracle is applied to the inputs |x〉|q〉 is |x〉|q ⨁ f(x)〉. 
The initial two qubits remain unchanged when x takes on the values of 0 or 1. If the first two qubits 

are both 1, then the third qubit is inverted. Therefore, we obtain, 

|x〉 ( |0〉−|1〉 √2 ) O → (−1) f(x) |x〉 ( |0〉−|1〉 √2 ) 

Above equation can be written as [17], 

|x〉 O → (−1) f(x) |x〉 

Steps 2, 3, and 4 may be expressed as the tensor product of n Hadamard gates applied to the state 

vector (2|0⟩⟨0|). The expression H ⨂n = 2|ѱ〉⟨ѱ| − I represents the tensor product of the Hadamard 

operator H with itself n times. The Grover's operator, designated as G, may be expressed as G = 
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(2|ѱ〉⟨ѱ|−I). The user's text is a single letter, "O". The Grover's method may be described as a rotation 

of R times inside an angle θ/2, where θ is a real value between 0 and π/2. This rotation occurs around 

the state |β〉 and is limited to an angle of π/4. 

|ѱ〉 ≡ √ N−M N |α〉+ √ 1 N |β〉 

The state |α〉 is defined as the sum of all |x〉 states, except the state |u〉, divided by the square root of N 

minus M. The state |β〉 is simply equal to the state |u〉. The rotation may be represented as R < ⌈ π 4 √ 

2N M ⌉, implying that R has an upper bound of ⌈ π 4 √ 2N M ⌉. Consequently, R can be approximated 

as O(√N/M). If the value of M is equal to 1, meaning that the solution is discovered in a single iteration 

of Grover's method, then the complexity of R is O(√N).  

 

3. Utilization and Performance Examination  

A thorough examination of the system design, implementation, and performance results for three-, 

four-, and five-qubit quantum systems is given in this section. The program was ran on Quantum 

Programming Studio, an online simulator and integrated development environment (IDE) for building, 

debugging, and simulating quantum algorithms on platforms including Google Cirq, IBM Q, and 

Rigetti. An open-source simulator based on JavaScript is called Quantum-circuit. More than 20 qubits 

may be simulated by a quantum circuit utilizing node.js on a server or a web browser. It is possible to 

import quantum circuits from Quil and Open QASM. After designing the quantum circuit in the IDE, 

it may be exported to a number of quantum programming languages, including pyQuil and Open 

QASM, Quil, Qiskit, Cirq, Tensor Flow Quantum, QSharp, and QuEST. This allows for seamless 

translation between different quantum programming languages. It has been noted that the application 

of each quantum gate introduces a little inaccuracy to the quantum state. This phenomenon arises from 

the specific arrangement of circuits and the interplay between individual qubits, as well as their 

interaction with other qubits and gates. 

 

4. Implementation with 3-Qubits 

Figure 2 depicts the circuit diagram of a 3-qubit system using 13 gates. A 3-qubit quantum circuit 

exhibits no significant error rate. Figure 3 displays the Q-sphere with phase angle representation of the 

3-qubit state, while Figure 4 shows the measurement probability of the marked state. It is essential to 

emphasize that, even in the case of a single qubit, the q-sphere and the Bloch sphere are not equivalent. 

In fact, the Bloch sphere provides a localized picture of the quantum state, similar to the phase disk, in 

which each qubit is seen independently. Examining the quantum state as a whole from a global 

perspective can provide greater insight into how registers of qubits, or multi-qubit states, behave when 

quantum circuits are applied. This global perspective and the quantum state are represented visually 

by the q-sphere. Therefore, the q-sphere should be the main visualization tool while investigating 

quantum algorithms and applications on modest numbers of qubits.  

When n (number of qubits used) equals 3, there are 8 potential states (N = 23). Assuming that the 

answer is located at index 4 in the state |100〉, we obtain the following: 

|ѱ〉 O → 1 /2 (|000⟩+ |001⟩ + |010⟩ + |100⟩ + |011⟩+ |101⟩ + |110⟩+ |111⟩) 
Therefore, when the oracle operator acts on the state |x〉, it alters the amplitude of that state. Now, do 

the Hadamard transform H ⊗n on these basis states, resulting in: 

|ѱ〉 H⨂ 2 → 1/ 2 (|000⟩ + |001⟩ + |010⟩ − |100⟩+ |011⟩ + |101⟩+ |110⟩+ |111⟩) 
Following a conditional phase shift, we obtain 2, or 3 distinct superposition states as, 

|ѱ〉 phase → 1 /2 (|000⟩ − |001⟩ − |010⟩ + |100⟩⟩− |011⟩− |101⟩− |110⟩− |111⟩) 
After the acquired states are subjected to the Hadamard transform H ⨂n, the matched element on an 

index is achieved and is provided as, 

|ѱ〉 → |100〉 

Therefore, Grover's technique requires two repetitions to reach the required state for n = 3. 
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Figure 1: Circuit Diagram for the state |100〉 

 

 
Figure 2: Q- Sphere of 3-qubit system representation for the state |100〉 

 

 
Figure 4: Probability Measurement for a 3-qubit system in the state |100〉 

 

5. Fourth-Qubit Implementation 

Figure 5 depicts the circuit diagram for a 4-qubit system consisting of 27 gates. The design of the 

system is free from any noise or errors. Figure 6 displays the Q-sphere with phase angle representation 

of the 4-qubit state, whereas Figure 7 shows the measurement probability. When n is equal to 4, there 

are 16 alternative states, represented by N = 24. Assuming the answer is located at index 4, which is 

represented by |0100〉, we have the following: 

|ѱ〉 O → 1/2(|0000⟩ + |0001⟩ + |0010⟩ + |0100⟩ + |0011⟩ + |0101⟩ + |0110⟩ + |0111⟩ + |1000⟩ + |1001⟩ 
+ |1010⟩ + |1011⟩ + |1100⟩ + |1101⟩ + |1110⟩ + |1111⟩) 
Upon performing the Hadamard transform H ⊗n on |x〉, the system's state is shown as:  

|ѱ〉 H⨂ 2 → 1/2(|0000⟩ + |0001⟩ + |0010⟩ - |0100⟩ + |0011⟩ + |0101⟩ + |0110⟩ + |0111⟩ + |1000⟩ + 

|1001⟩ + |1010⟩ + |1011⟩ + |1100⟩ + |1101⟩ + |1110⟩ + |1111⟩)  

Following a Conditional Phase Shift on all basis states other than |0000〉, the outcome is displayed as 

follows:  
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|Ѱ〉 phase →1/2(|0000⟩ − |0001⟩ − |0010⟩ + |0100⟩ - |0011⟩ − |0101⟩ − |0110⟩ − |0111⟩ − |1000⟩ − 

|1001⟩ − |1010⟩ − |1011⟩ − |1100⟩ − |1101⟩ − |1110⟩ − |1111⟩ 

|ѱ〉 → |0100〉  

The matching is discovered when the states are subjected to H ⨂n. Therefore, for n = 4, three Grover's 

method repetitions are required to reach the target state. 

 
Figure 5: Circuit Diagram for the state |0100〉 

 
Figure 6: Q- Sphere of 4-qubit system representation for the state |0100〉 

 

 
Figure 7: Probability Measurement for a 4-qubit system in the state |0100〉 

 

6. Using 5-Qubits for Implementation 

Figure 8 depicts the circuit diagram for a 5-qubit system consisting of 34 gates. The design of the 

system is free from any noise or errors. Figure 9 displays the Q-sphere with phase angle representation 
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of the 2-qubit state, whereas Figure 10 shows the measurement probability. When n is equal to 5, there 

are 32 alternative states, represented by N = 25. Assuming the answer is located at index 4, which is 

represented by |00100〉, we have the following: 

|ѱ〉 O → 1/2(|00000⟩ + |00001⟩ + |00010⟩ + |00100⟩ + |01000⟩ + |10000⟩ + |00011⟩ + |00101⟩ + |01001⟩ 
+ |10001⟩ + |00110⟩ + |01100⟩ + |01010⟩ + |10010⟩ + |11000⟩ + |00111⟩ + |11100⟩ + |01110⟩ + |11001⟩ 
+ |11010⟩ + |01101⟩ + |10110⟩ + |10011⟩ + |01011⟩ + |10101⟩ + |01011⟩ + |01111⟩ + |10111⟩ + |11011⟩ 
+ |11101⟩ + |11110⟩ + |11111⟩) 
After the Hadamard transform H ⊗n is applied to |x〉, the system's state is shown as follows:  

|ѱ〉 H⨂ 2 1/2(|00000⟩ + |00001⟩ + |00010⟩ - |00100⟩ + |01000⟩ + |10000⟩ + |00011⟩ + |00101⟩ + |01001⟩ 
+ |10001⟩ + |00110⟩ + |01100⟩ + |01010⟩ + |10010⟩ + |11000⟩ + |00111⟩ + |11100⟩ + |01110⟩ + |11001⟩ 
+ |11010⟩ + |01101⟩ + |10110⟩ + |10011⟩ + |01011⟩ + |10101⟩ + |01011⟩ + |01111⟩ + |10111⟩ + |11011⟩ 
+ |11101⟩ + |11110⟩ + |11111⟩) 
Following a Conditional Phase Shift on all basis states other than |00000〉, the outcome is displayed as 

follows:  

|Ѱ〉 phase →1/21/2(|00000⟩ - |00001⟩ - |00010⟩ + |00100⟩ - |01000⟩ - |10000⟩ - |00011⟩ - |00101⟩ - 
|01001⟩ - |10001⟩ - |00110⟩ - |01100⟩ - |01010⟩ - |10010⟩ - |11000⟩ - |00111⟩ - |11100⟩ - |01110⟩ - 

|11001⟩ - |11010⟩ - |01101⟩ - |10110⟩ - |10011⟩ - |01011⟩ - |10101⟩ - |01011⟩ - |01111⟩ - |10111⟩ - 

|11011⟩ - |11101⟩ - |11110⟩ - |11111⟩) 

|ѱ〉 → |00100〉 

The matching is discovered after applying H ⨂n to the states. 

 
Figure 8: Quantum Circuit Diagram for the state |00100〉 

 
Figure 9: Q-sphere of a 5-qubit system representation for the state |00100〉 
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Figure 10: Probability measurement for a 5-qubit system for the state |00100〉 

Consequently, Grover's technique requires 4 iterations to reach the required state for n = 5.  

 

7. Discussion and Conclusion  

Quantum search algorithms have potential applications in the following areas: i) efficiently counting 

the number of solutions to a given search problem; ii) solving NP-complete problems more quickly; 

iii) finding cryptosystem keys more quickly [18], iv) determining the shortest path between two cities 

[19], and v) more quickly searching problems or extracting statistics from unstructured databases [20] 

than with classical computing. Grover's quantum search method was created and put into practice by 

the author on 3, 4, and 5 qubit systems. Analysis was provided about the quantity of gates utilized, the 

Q-sphere representation, and the likelihood of measurement.  

The findings illustrate that for each qubit increase, the number of gates required in the quantum circuit 

grows, with 3-qubit systems utilizing 13 gates, 4-qubit systems employing 27 gates, and 5-qubit 

systems utilizing 34 gates. However, despite the increase in gate count, the designs remain free from 

significant errors or noise, ensuring the reliability of the results. Moreover, the study showcases the 

visualization of quantum states using the Q-sphere representation, providing a global perspective of 

the quantum state and aiding in the comprehension of algorithm behavior on small qubit registers. 

Overall, the research underscores the potential of Grover's Algorithm in revolutionizing search 

methodologies, particularly in database searches, and highlights the importance of accurate quantum 

circuit design and simulation tools in facilitating quantum algorithm development. Through rigorous 

analysis and simulation, the study contributes to advancing our understanding and utilization of 

quantum computing techniques for real-world applications. 

 

8. Future Scopes of Grover’s Algorithm in Quantum Cryptography  

Grover's algorithm represents a transformative tool in quantum cryptography, offering the potential to 

revolutionize search processes and enhance security protocols. Its future applications span from 

optimizing brute-force attacks and Quantum Key Distribution to aiding in the development of post-

quantum cryptographic protocols. However, realizing these potentials requires overcoming significant 

challenges in quantum hardware and system integration. As quantum computing continues to advance, 

Grover's technique is expected to have a significant impact on how cryptography develops in the 

future, providing strong protection against new quantum attacks. 
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